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Abstract. Spheroidal harmonics H , , ( x ;  e ) ,  where c is the oblateness parameter, arise in 
the solution of certain partial differential equations by separation of variables in spheroidal 
coordinates. A numerical method is described which uses relaxation to compute eigenvalues 
A,n,, of H , , ( x ;  c )  for the case m 2 0 and n 2 m. Such a method is useful if eigenvalues 
A,,,,7 are required for a large sequence of values of e. The method converges quickly and 
gives good agreement with exact results. 

1. Spheroidal harmonics 

Spheroidal harmonics typically arise when certain partial differential equations are 
solved by the method of separation of variables using spheroidal coordinates. They 
satisfy the differential equation 

d x  

on the interval -1 s x s 1. Here m is an  integer, c is the oblateness parameter and A 
is the eigenvalue. Despite the notation, c2 may be positive or negative. For c 2 >  0 the 
functions are called ‘prolate’, while if c’ < 0 they are called ‘oblate’. The equation has 
singular points at x = f 1 and  we are interested in the solution with boundary conditions 
such that the solution is regular at x = * l .  This will only be possible for certain values 
of the eigenvalue A. 

The spherical case (where c = 0) produces the differential equation for Legendre 
functions P r ( x ) .  In this case the eigenvalues are 

A,,,,, = n ( n  + 1) n = m , m + l ,  . . .  . 
The integer n labels successive eigenvalues for fixed m. When n = rn we have the 
lowest eigenvalue and  the corresponding eigenfunction has no  nodes in the interval 
- 1  < x < 1. When n = m + 1 we have the next eigenvalue and  the eigenfunction has 
one node inside (-1, l ) ,  and so on. 

A similar situation holds for the general case c2 f 0. Writing the eigenvalues of 
equation (1)  as A,,,,(c) and  the eigenvectors as H,,,,(x; c), then for fixed m, n = m, 
m + 1, . . . , labels the successive eigenvalues. 

It is important to note that the computation of A,,,,(c) and  H,,,,(x; c )  traditionally 
has been quite difficult. Relevant complicated recurrence relations, power series 
expansions, etc, can be found in Abramowitz and  Stegun (1968), Flammer (1957) and  
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Morse and  Feshbach (1953). However, low-cost computing makes evaluation by direct 
solution of the differential equation quite feasible. 

The first step is to investigate the behaviour of the solution near the singular points 
x = +1. On substituting a power series expansion of the form 

oc 

H = ( l * x ) "  c C,(l+X)k 
k = O  

into equation ( l ) ,  we find that the regular solution has CY = m / 2 .  Without loss of 
generality we can take m a 0  since m + - m  is a symmetry of the equation. It is 
preferable to factor out this behaviour and  accordingly we set 

H = (1 - x')"'y (3)  
We then find from equation (1) that y satisfies the equation 

(1 -x2),-2(m d2Y + l)x-+ dy  ( p  - c2x2)y = 0 
dx dx ( 4 )  

where 

p = A - m ( m +  1). ( 5 )  

Both equations (1) and  (5) are invariant under the replacement x + -x .  Hence the 
functions H and y must also be invariant, except possibly for an  overall scale factor. 
Since the equations are linear, a constant multiple of a solution is also a solution. 
Also, since the solutions will be normalised, the scale factor can only be i l .  If n - m 
is odd, there are an  odd number of zeros in the interval ( -1 , l ) .  Thus we must choose 
the antisymmetric solution y (  -x )  = -y(x) which has a zero at  x = 0. Conversely, if 
n - m is even we must have the symmetric solution. Thus 

(6) 

The boundary conditions on equation ( 4 )  require that y be regular at x = *l, i.e. 

( 7 )  

y m n  ( -x )  = ( - 1) n-mymn ( X I  

and similarly for Hmn. 

near the endpoints the solution takes the form 

y = c , + c , ( l  - x 2 ) + c ~ ( 1 - x 2 ) * + .  . . . 
On substituting this expansion into equation ( 4 )  and letting x +  1, we obtain 

7 
p - c -  

c1= -- 4 ( m  + 1)  CO 

and so 

A similar equation holds at x = -1 with a minus sign on the right-hand side. The 
irregular solution has a different relation between function and derivative at the 
endpoints. 

Instead of integrating the equation from -1 to + l ,  we can exploit the symmetry 
(6) to integrate from 0 to 1. The boundary condition at x = 0 is 

Y ( 0 )  = 0 n -- m odd 

y ' ( 0 )  = 0 n - m even. 
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A third boundary condition comes from the fact that any constant multiple of a solution 
y is a solution. This means that we can normalise the solution. We adopt the 
normalisation that the function H,, has the same limiting behaviour as P," at x = 1 ,  
namely 

(11) lim (1 - X * ) - " ~ H ~ , ( X ;  c )  = lim (1 -x*)-"*P,"(x). 
x - I x - 1  

Various normalisation conventions in the literature are tabulated by Flammer (1957). 
The imposition of these boundary conditions for the second-order equation ( 4 )  

makes it an  eigenvalue problem for A or equivalently for p. We write it in the standard 
form by setting 

Yl  =Y  

YZ = Y '  

Y3 = F. 

Then 

Y t  =Y*  

y :  = 0. 

In this notation the boundary condition at x = 0 is 

Y l  = o  n - m  odd 

Y 2 = 0  n - m even. 

At x = 1 we have two conditions: 

Y3 - C' 
y2=- 2 ( m  + 1) 

( - l ) " ' ( n + m ) !  
2"m! ( n  - m ) !  

y ,  = lim (1  - X~)-""P,"(X) = = y, 
x+  I 

The decision has now to be made on what numerical method to use. If we simply 
require a few isolated values of A or H, shooting is probably the quickest method. 
Shooting methods (see Keller 1976) vary in their choice of initial or final conditions 
and  in the integration of the equations in one direction or  two directions. Newton's 
technique is the most widely known of the shooting methods and  can be applied 
successfully to boundary-value problems of this type as long as the resulting initial-value 
problem is stable and a set of good guesses can be made for the unspecified conditions 
(see Kubicek and Hlavacek 1983). An up-to-date discussion of methods of this type 
is given by Constantinides (1987). However, the relaxation approach is preferable if 
we require values for a large sequence of values of c. Relaxation has the advantage 
that it rewards a good initial guess with rapid convergence. Also the previous solution 
should be a good initial guess if c is changed only slightly. A comparison of various 
collocation methods and  finite-difference methods, including relaxation, for boundary- 
value problems of this type is given by Russell (1977). 
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2. Relaxation method 

In relaxation methods we essentially replace ODE by approximate finite-diff erence 
equations on a grid or mesh of points which spans the domain of interest. To illustrate, 
we could replace a general first-order differential equation 

y 1  = f ( x ,  Y )  (21) 

yk - yh - 1 - ( x k  - x k  - 1 ) f ( t ( X k  + x k -  I )  9 t( y k  +yk - 1 )) = 0. (22) 

with an algebraic equation relating function values at two points k, k - 1 by using 

Extending this to a system of N first-order ODE leads to an approximation by algebraic 
relations of the form 

O = R k = Y k - y k - i - ( X k - X k - I ) f k ( X k ,  X k - l , ) ( k , Y k - l )  k = 2 , 3 ,  . . . ,  M (23) 
using a mesh of M points. 

The solution of the finite-difference equations (23) consists of a set of variables 
yJ,k, i.e. the values of the N variables y, at the M points x k .  By taking an initial 
approximation for the y,,k it is possible to determine increments Ay,,, such that Y,,~ 4- Ay,,, 
is an improved approximation to the solution. 

First-order Taylor series with respect to small changes Ayk are used to obtain 
equations for the increments. This gives at an interior point ( k  = 2 ,3 ,  . . . , M )  

Rk( Y ,  + AY,, Yk- 1 + AYk- 1)  

For a solution the updated value of R ( y + A y )  should be zero and this leads to the 
general set of equations 

Y 2 N C V , , n A Y n , k - l +  V , , n A Y n - N , k  = w R 1 . k  j = 1 , 2 ,  . . . ,  N (25) 
n = l  n - N - r l  

where 

The quantity V,,n is an N x 2 N matrix at each point k. Thus each interior point supplies 
a block of N equations coupling 2 N  corrections to the solution variables at the points 

In a similar way, the algebraic equations at the boundaries can be expanded in a 
first-order Taylor series for increments that improve the solution. Hence we have a 
set of linear equations to be solved for the corrections Ay, iterating until the corrections 
are sufficiently small. These equations have a special structure because each & couples 
only points k, k - 1. 

k, k -1 .  

3. Numerical solution by relaxation 

In our case, for simplicity, we choose a uniform grid on the interval 0 G x s 1. For a 
total of M mesh points, we have 

h = l / ( m - 1 )  (27) 
xk = ( k  - 1)h  k = l , 2 , .  . . ,  M. (28) 
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At interior points k = 2,3,  . . . , M ,  equation (15) gives 

R l , k  =yl ,k  -yl,k-l - f h ( Y 2 , k + Y 2 , k - l ) *  

Equation (16) gives 

Finally, equation (17) gives 

R3,k =Y3 ,k  -y3,k-l ‘ (33) 

The matrix of partial derivatives V,, of equation (26) is defined so that i labels the 
equation and j the variable. In our case, j runs from 1 to 3 for y, at k - 1 and from 
4 to 6 for yj at k. Thus equation (29) gives 

Similarly, equation (3 1) gives 

while from equation (33) we have 

At x = 0 we have the boundary condition 

n - m  odd 
n - m even. V3,I = (37) 

We adopt the convention in the relaxation solution that for one boundary condition 
at k = 1 only V3,, can be non-zero. Also, j takes on the values 4-6 since the boundary 
condition involves only y,, not yk - l .  This means that the only non-zero values of V3,, 
at x = 0 are 

v3.4 = 1 n - m  odd 

v,,5 = 1 n - m even. 

At x = 1 we have 
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Thus 

We now need a computer program to implement the above algorithm and to test 
out by computing the eigenvalues Amn(c) for selected values of in, n and c. 

4. Computed results 

A computer program has been written which implements the above algorithm. It 
computes eigenvalues of spheroidal harmonics Hm,,(x; c)  for m 3 0 and n 3 m. For 
simplicity we choose an  equally spaced mesh of M = 41 points, i.e. h = 0.025. This 
should give good accuracy for the eigenvalues up  to moderate values of n - m. 

Within the program, the set of linear equations ( 2 5 )  is solved by Gaussian elimina- 
tion for the corrections Ay, iterating until the corrections are sufficiently small. It is 
best to use a form of Gaussian elimination which exploits the special structure of the 
matrix to minimise the total number of operations and  which minimises storage of 
matrix coefficients by packing the elements in a special blocked structure. 

Since the boundary condition at x = 0 does not involve y ,  if n - m is even, it will 
be necessary to interchange the columns for y ,  and y ,  to avoid a zero pivotal element 
in the matrix [ V,,]. 

Resulting from the above method a computer program is quickly available which 
computes eigenvalues of spheroidal harmonies H m , , ( x ;  c)  for m 2 0 and n 3 m. Also 
the program is highly interactive and prompts for values of m and n. This relaxation 
is preferable to the other methods previously discussed for the computation of values 
of A and H for a large sequence of values of c. The important advantage is that a 
good initial guess is rewarded by rapid convergence, i.e. only a few iterations are 
required. Also a good initial guess is provided by the previous solution if c is changed 
only slightly. 

The program has been run and checked against values of A,,,,, ( c )  given in the tables 
at the back of Flammer (1957) or in table 21.1 of Abramowitz and  Stegun (1968). 
Typically it converges in about three iterations. A few comparisons are given in table 

Table 1. Selected computed values of A 

m n c 2  

1 1 1 .o 
4.0 

16.0 

2 2 0.1 
1 .o 
4.0 

2 5 1 .o 
16.0 

4 11 -1.0 

Computed A Exact A 

2.195 55 2.195 55 
2.734 11 2.734 11 
4.399 61 4.399 59 

6.01427 6.014 27 
6.140 95 6.140 95 
6.542 53 6.542 50 

30.437 2 30.436 1 
37.013 5 36.996 3 

131.554 131.560 
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1 to demonstrate the high accuracy which can be achieved with a minimum of 
computational effort for eigenvalues up to moderate values of n - m. For the range 
of results quoted the accuracy is well within 0.05%. The alternative of using the power 
series expansion for A,, given in the appendix would require awkward terms beyond 
those up to k = 4 quoted in the appendix to achieve this level of accuracy. 

This point is illustrated in table 2 by comparing values of Amn up to k = 4 in the 
power series expansion ( A l )  with both the relaxation and exact values for the case 
m = n = 1. The alternative of using the asymptotic expansion (A2) is limited and only 
applies to large values of c. 

Table 2. Comparison of values of A,, up to k = 4 in the power series expansion ( A I )  with 
both the relaxation and exact values for the case m = n = 1. 

Power series A Computed A 
m n C2 (up to k=4) (relaxation) Exact A 

1 1 1 .o 2.195 55 2.195 55 2.195 55 
4.0 2.734 95 2.734 11 2.734 1 1  
16.0 4.604 23 4.399 61 4.399 59 

Appendix. Power series and asymptotic expansions for Amn 

Al .  Power series expansion 

It has been shown (see Abramowitz and Stegun 1963) that the power series expansion 
for Amn is given by 

where 

(2m - 1)(2m + 1) 
10 = n(n + 1) 

2 - 2  -’( 1 -  (2n - 1)(2n +3)  

-(n - m+ l ) ( n  - m  + 2 ) ( n +  m+ l ) (n  + m +2)  
2(2n + 1)(2n +3)3(2n + 5 )  

+ 

( n  - m+ l ) ( n  - m + 2 ) ( n  + m+ l ) ( n  + m + 2 )  

14 = 

( n  - m - l ) (n  - m ) ( n + m  - l ) ( n +  m )  
2(2n -3)(2n - 1)3(2n + 1) 

(2n - 1 ) ( 2 n + 1 ) ( 2 n + 3 ) 5 ( 2 n + 5 ) ( 2 n + 7 )  

( n  - m  - l ) ( n  - m ) ( n  + m - l ) ( n  + m )  
( 2 n - 5 ) ( 2 r 1 - 3 ) ( 2 n - l ) ~ ( 2 n + 1 ) ( 2 n + 3 )  

- 

I ,  = (4m2 - 1)  



3692 J Caldwell 

where 

( n  - m - l ) ( n  - m ) ( n  + m - l ) ( n  + m )  
(2r1-5)~(2n  -3 ) (2n - l ) ’ (2n+1) (2n+3)*  

A =  

( n  - m + l ) ( n  - m + 2 ) ( n  + m + l ) ( n  + m + 2 )  - 
(2n - 1)’(2n + 1)(2n +3)’(2n +5)(2n  +7)2  

( n  - m -3) (  n - m - 2 ) ( n  - m - l ) ( n  - m)(n  + m -3) (n  + m -2) (n  + m - 1)( n + m )  
(2n -7 ) (2n  -5)*(2n-3)’(2n -1)‘(2n+l) 

B =  

( n  - m + l ) ( n  - m + 2 ) ( n  - m +3) (n  - m + 4 )  
x ( n + m +  l ) ( n +  m + 2 ) ( n + m + 3 ) ( n + m + 4 )  

( 2 n +  1)(2n+3)‘(2n +5)3 (2n+7)2 (2n+9)  

( n  - m + 112(n - m+212(n + m + l)’(n + m +2)’ 
(2n + 1)2(2n +3)’(2n + 5 ) ’  

C =  

( n - m - 1 ) 2 ( n - m ) 2 ( n + m - 1 ) 2 ( n + m ) 2  - 
(2n -3)2(2n  - 1)7(2n + 

( n  - m - I ) ( n  - m)(n  - m + l ) ( n  - m +2)(n  + m - l ) ( n  + m)(n  + m +  l ) ( n  + m + 2 )  
(2n - 3 ) ( 2 n - l ) 4 ( 2 n + 1 ) 2 ( 2 n + 3 ) 4 ( 2 n + 5 )  

D =  

A2. Asymptotic expansion 

Again it has been shown (see Abramowitz and  Stegun 1968) that the asymptotic 
expansion for A,,,,, is given by 

-- [5(q4+26q2+21)  -384m2(q’+ l ) ]  
1024c2 

1 1  m2 
128 8 

- 2 ( ~ ( 3 3 q ’  + 1594q’ + 5621 q )  --(37q’ + 167q) +-q 

1 1  
c4 ( 2562 

-- -(63q6+4940q4+43 327q2+22 470) 

m2 

- - ( 1 1 5 q 4 + 1 3 1 0 q 2 + 7 3 5 ) + ~ ( q ’ + l )  m2 3m4 
512 

-- - (527q7+61 529q5+1043 961q3+2241 599q) -32x  1024 ( 1024’ 

(A2) 

x (5739q5+ 127 550q3+298 951q)+-(355q3+ m 4  
512 

q = 2( n - m )  + 1. 
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